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ABSTRACT 

Modeling real-life data is still a major problem, especially in situations 

where the data does not follow a certain distribution. This issue still leaves 

a gap for the need to propose a new model, which is expected to address 

the attributes and behavior of real data. Based on this, a novel generalized 

family of distributions called "truncated exponential log Topp-Leone 

Generalized Families of Distributions" is introduced based on Topp-Leone 

distribution and truncated exponential distribution. Along with its features, 

the new generator's statistical qualities are examined. Also, the generator 

parameters and parameter vector of the baseline distribution were 

calculated with the maximum likelihood, goodness of fit (Cramer-Von-

Mises), and least square techniques. We demonstrate how adaptable the 

suggested approach is by applying it to two data sets (waiting time data sets 

and Wheaton River flood data sets) and conclude that the TELTL-G 

outperforms other comparable distributions in terms of fit. In conclusion, 

we advise that this generator be used as a generalized family of distributions 

in modeling time failure. 
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1. INTRODUCTION

Modelling Statistical data has become an 

important aspect of lifetime data [10] in many areas. 

More statistical models that offer trustworthy and 

accurate predictions of the underlying processes are 

being developed by researchers in various fields as 

data sets get more diverse and complicated [20]. 

This attracts many researchers in many field 

including reliability analysis, engineering, 

economics, biological studies, and environmental 

and medical sciences, which require a suitable 
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statistical model for accurate data realization. 

According to [25], there is a pressing need to 

suggest new models that can more accurately 

represent the real-life phenomena present in a given 

dataset because there are still numerous situations 

in which none of the conventional or classical 

probability models can adequately describe the 

actual data. According to [22], the concept 

essentially began with the definition of various 

mathematical functional forms, followed by the 

introduction of location, scale, or inequality 

parameters. In order to make the distribution of 

interest more flexible, distribution theory 

researchers typically model data by creating a new 

distribution family or by adding a new parameter 

[4]. It has been demonstrated that this induction of 

parameter (s) is helpful for investigating tail 

properties and for enhancing the suggested 

generator family’s goodness-of-fit [18]. 

[24] Created a novel J-shaped histogram based on 

experimental distribution. It is a bounded support 

continuous distribution that can be used to 

simulate a distribution’s lifetime. There has been 

little discussion about the Topp Leone (TL) 

distribution prior to its discovery, it was unknown 

until [14] examined a few of its characteristics, 

moments, and central moments. The flexibility of 

its hazard rate function (HRF) makes TL a suitable 

distribution for modeling lifetime data, which can 

be either bathtub or non-increasing, depending on 

the parameter’s values [13]. 

Many researchers have introduced a 

generalization of distribution , like: Topp-Leone 

Generalized Family of Distribution TLG by [11], 

A New Topp-Leone Generalized Family of 

Distribution by [9], Topp-Leone Exponentiated-

Generalized by [19], Sin Topp-Leone Generalized 

Distribution by [2], Exponentiated Topp-Leone 

Exponentiated-Generalized Distibution by [17], 

Frechet Topp-Leone Generalized Distribution by 

[17], Transmuted Topp-Leone Generalized by 

[26], New Power Topp-Leone Generated 

Distribution by [6], and Poisson Topp-Leone 

Generator of Distribution by [12] among others. 

In this paper, we introduce a new generalization of 

distribution called truncated exponential log topp-

leone generalized family of distributions, which 

comprises the pdf of a truncated exponential 

distribution and a log-topp-leone generalized 

family of distributions. The cdf and pdf of the log 

topp-leone generalized distribution are 

respectively given by; 

𝐹𝐿𝑇𝐿−𝐺(𝑦) = (1 − 𝑒−2𝐻(𝑦,𝜓))
𝜃

   𝑦, 𝜃 > 0       (1) 

And the pdf is 

𝑓𝐿𝑇𝐿−𝐺(𝑦) = 2𝜃𝑒−2𝐻(𝑦,𝜓)(1 − 𝑒−2𝐻(𝑦,𝜓))
𝜃−1

  

                                                              𝑦, 𝜃 > 0      (2) 

 

The proposed Truncated exponential Log Topp-

leone Generalized Family of distributions is drive 

from the cdf of truncated exponential distribution 

and the cdf of Log Topp-Leone G distribution in 

equation (1) using the link function by integrating 

the cdf of truncated exponential distribution with 

limit from 0 to the cdf of log topp-leone 

generalized family, and is drive as follows. 

𝐹𝑇𝐸𝐿𝑇𝐿−𝐺(𝑦, 𝛽, 𝜃, 𝜓) = ∫
𝛽𝑒−𝛽𝑦

1−𝑒−𝛽 𝑑𝑦
(1−𝑒−2𝐻(𝑦,𝜓))

𝜃
 

0
(3) 

                                                                                  

  𝐹𝑇𝐸𝐿𝑇𝐿−𝐺(𝑦, 𝛽, 𝜃, 𝜓) =
1−𝑒

−𝛽(1−𝑒−2𝐻(𝑦,𝜓))
𝜃

1−𝑒−𝛽          (4) 

And we can find the probability density function by 

differentiating the CDF using quotient rule. 

 

𝑓𝑇𝐸𝐿𝑇𝐿−𝐺(𝑦, 𝛽, 𝜃, 𝜓) =
2𝛽𝜃(1−𝑒−2𝐻(𝑦,𝜓))

𝜃−1

1−𝑒−𝛽 x 

 

  ℎ(𝑦, 𝜓)𝑒−2𝐻(𝑦,𝜓)𝑒−𝛽(1−𝑒−2𝐻(𝑦,𝜓))
𝜃

 𝑦, 𝜃, 𝛽 > 0 (5) 

W

here ℎ(𝑦) and 𝐻(𝑦) are the probability density 

function and cumulative density function of the 

baseline distribution, β is a shape parameter, θ is a 

second shape parameter, and 𝜓 is the parameter 

vector of the baseline distribution. 
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1.1 Important expansion of TELTL-G 

Given the probability density function: 

𝑓𝑇𝐸𝐿𝑇𝐿−𝐺(𝑦, 𝛽, 𝜃, 𝜓) =
2𝛽𝜃(1 − 𝑒−2𝐻(𝑦,𝜓))

𝜃−1

1 − 𝑒−𝛽
𝑥 

 

  ℎ(𝑦, 𝜓)𝑒−2𝐻(𝑦,𝜓)𝑒−𝛽(1−𝑒−2𝐻(𝑦,𝜓))
𝜃

 𝑦, 𝜃, 𝛽 > 0 (6) 

Note that  (1 − 𝑒−2𝐻(𝑦,𝜓))
𝜃−1

< 1 and β≠ 1 

Using power series expansion 

(1 − 𝑒−2𝐻(𝑦,𝜓))
𝜃−1

=

       ∑ (𝜃−1
𝑖

)(−1)𝑖∞
𝑖=0 𝑒−2𝑖𝐻(𝑦,𝜓)                        (7) 

Substituting (7) in to (6), we have 

𝑓(𝑦, 𝛽, 𝜃, 𝜓) = ∑ (𝜃−1
𝑖

)
2𝛽𝜃(−1)𝑖ℎ(𝑦,𝜓)

1−𝑒−𝛽
∞
𝑖=0 x 

        𝑒−2(𝑖+1)𝐻(𝑦,𝜓)𝑒−𝛽(1−𝑒−2𝐻(𝑦,𝜓))
𝜃

                    (8) 

Also, using maclaurin series expansion 

𝑒−2(𝑖+1)𝐻(𝑦,𝜓) = ∑
(−1)𝑗2𝑗(𝑖+1)𝑗(𝐻(𝑦,𝜓))

𝑗

𝑗!
      ∞

𝑗=0 (9) 

Substitute (9) in to (8), we have 

𝑓(𝑦, 𝛽, 𝜃, 𝜓) = ∑ ∑ (𝜃−1
𝑖

)
2𝑗+1(−1)𝑖+𝑗(𝑖+1)𝑗

(1−𝑒−𝛽)𝑗!

∞
𝑗=0

∞
𝑖−1 x 

     𝛽𝜃ℎ(𝑦, 𝜓)(𝐻(𝑦, 𝜓))
𝑗
𝑒−𝛽(1−𝑒−2𝐻(𝑦,𝜓))

𝜃

       (10) 

Likewise, 

𝑒−𝛽(1−𝑒−2𝐻(𝑦,𝜓))
𝜃

= ∑
(−1)𝑘2𝛽𝑘(1−𝑒−2𝐻(𝑦,𝜓))

𝑘𝜃

𝑘!
 ∞

𝑘=0 (11) 

Putting (11) in to (10), equation (10) become 

𝑓(𝑦) = ∑ ∑ ∑ (𝜃−1
𝑖

)
2𝑗+1(−1)𝑖+𝑗+𝑘(𝑖+1)𝑗

(1−𝑒−𝛽)𝑗!𝑘!

∞
𝑘=0

∞
𝑗=0

∞
𝑖=0 x 

𝛽𝑘+!𝜃ℎ(𝑦, 𝜓)(𝐻(𝑦, 𝜓))
𝑗
(1 − 𝑒−2𝐻(𝑦,𝜓))

𝑘𝜃
 (12) 

Again, 

(1 − 𝑒−2𝐻(𝑦,𝜓))
𝑘𝜃

=  ∑ (𝑘𝜃
𝑚

)
𝑒−2𝑚𝐻(𝑦,𝜓)

𝑚!
       ∞

𝑚=0 (13) 

Implies that, equation (12) become. 

𝑓(𝑦) = ∑ ∑ ∑ ∑ (𝜃−1
𝑖

)∞
𝑚=0

∞
𝑘=0

∞
𝑗=0

∞
𝑖=0 (𝑘𝜃

𝑚
)x 

𝜃ℎ(𝑦, 𝜓)(𝐻(𝑦, 𝜓))
𝑗
𝑒−2𝑚𝐻(𝑦,𝜓)x 

                     
2𝑗+1(𝑖+1)𝑗(−1)𝑖+𝑗+𝑘𝛽𝑘+1

(1−𝑒−𝛽)𝑗!𝑘!
                  (14) 

Similarly, 

𝑒−2𝐻(𝑦,𝜓) = ∑
(−1)𝑝2𝑝𝑚𝑝𝐻(𝑦,𝜓)𝑝

𝑝!
                    ∞

𝑝=0 (15) 

By substituting (15) in to (14), we have. 

𝑓(𝑦) = ∑ ∑ ∑ ∑ ∑ (𝜃−1
𝑖

)(𝑘𝜃
𝑚

)∞
𝑝=0

∞
𝑚=0

∞
𝑘=0

∞
𝑗=0

∞
𝑖=0 x 

2𝑗+𝑝+1(−1)𝑖+𝑗+𝑘+𝑝(𝑖+1)𝑗𝛽𝑘+1𝜃𝑚𝑝ℎ(𝑦,𝜓)(𝐻(𝑦,𝜓))
𝑗+𝑝

(1−𝑒−𝛽)𝑗!𝑘!
 (16) 

                                    

⇒ 𝑓(𝑦, 𝛽, 𝜃, 𝜓) = 𝒯ℎ(𝑦, 𝜓)(𝐻(𝑦, 𝜓))
𝑗+𝑝

 

Where, 

𝒯 = ∑ ∑ ∑ ∑ ∑ (𝜃−1
𝑖

)(𝑘𝜃
𝑚

)∞
𝑝=0

∞
𝑚=0

∞
𝑘=0

∞
𝑗=0

∞
𝑖=0 x 

         
2𝑗+𝑝+1(−1)𝑖+𝑗+𝑘+𝑝(𝑖+1)𝑗𝛽𝑘+1𝜃𝑚𝑝

(1−𝑒−𝛽)𝑗!𝑘!
                  (17) 

 

2. SOME PROPERTIES OF TELTL-G 

In this part, we discussed some mathematical 

properties of TELTL-G as follows: 

 

2.1. Quantile of TELTL-G 

Let Y be the TELTL-G random variable with pdf 

and cdf in (4) and (5), the quantile function of X, 

say 𝐻−1(𝑦, 𝜓) is drive as follows: 

𝓋 = 𝐹𝑇𝐸𝐿𝑇𝐿−𝐺(𝑦) =
1 − 𝑒−𝛽(1−𝑒−2𝐻(𝑦,𝜓))

𝜃

1 − 𝑒−𝛽
      (18) 

⇒𝐻−1(𝑦, 𝜓) = −
1

2
{1 − {

− ln(1−𝓋(1−𝑒−𝛽))

𝛽
}

1

𝛽

} (19) 

 

Hence, the median (quantile) of the Truncated 

exponential log top-leone generalized family of 

distribution when 𝓋 = 0.5 is given by; 
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𝑦𝓋 = −
1

2
{1 − {

− ln(1−(0.5)(1−𝑒−𝛽))

𝛽
}

1

𝛽

}              (20) 

 

2.2. Survival function 

The Survival function 𝑆(𝑌) of a TELTL-G as one 

of the important tools for measuring the failure time 

of a system is given by; 

𝑆(𝑦) = 1 − 𝐹(𝑦)=1 −
1−𝑒

−𝛽(1−𝑒−2𝐻(𝑦,𝜓))
𝜃

1−𝑒−𝛽        (21) 

⇒ 𝑆(𝑦) =
𝑒−𝛽(1−𝑒−2𝐻(𝑦,𝜓))

𝜃

− 𝑒−𝛽

1 − 𝑒−𝛽
                 (22) 

 

2.3. Hazard function 

The hazard rate function H(Y) of a TELTL-G is 

given by; 

            𝐻(𝑦) =
𝑓(𝑦)

𝑆(𝑦)
=

𝑓(𝑦)

1 − 𝐹(𝑦)
                      (23) 

⇒ 𝐻(𝑦) =
2𝛽𝜃(1−𝑒−2𝐻(𝑦,𝜓))

𝜃−1
ℎ(𝑦,𝜓)𝑒−2𝐻(𝑦,𝜓)

𝑒
−𝛽(1−𝑒−2𝐻(𝑦,𝜓))

𝜃

−𝑒−𝛽

x 

                               𝑒−𝛽(1−𝑒−2𝐻(𝑦,𝜓))
𝜃

                  (24) 

2.4. Entropy 

Entropy in many situations used to measures the 

system’s randomness, and variation or uncertainty 

of a random variable Y, and is define as; 

          𝐼𝑥(𝑦) =
1

1−𝛿
𝑙𝑜𝑔 ∫ ℎ(𝑦)𝛿𝑑𝑦

∞

−∞
                (25)     

For the Truncated exponential log top-leone 

generalized family of distribution, the entropy is 

given by; 

          𝐼𝑥(𝑦) =
1

1 − 𝛿
𝑙𝑜𝑔 ∫ 𝑓(𝑦)𝛿𝑑𝑦

∞

0

           (26) 

But      𝑓(𝑦)𝛿 = (𝒯𝛷)𝛿 

         ⇒  𝐼𝑥(𝑦) =
1

1 − 𝛿
𝑙𝑜𝑔 ∫ (𝒯𝛷)𝛿𝑑𝑦

∞

0

     (27) 

       ⇒
1

1 − 𝛿
[𝛿𝑙𝑜𝑔𝒯 + 𝑙𝑜𝑔 ∫ 𝛷𝛿𝑑𝑦

∞

0

]         (28) 

Where, 

𝛷 = ℎ(𝑦, 𝜓)(𝐻(𝑦, 𝜓))
𝑗+𝑝

 

 

2.5. Moment of TELTL-G 

Moments is a crucial part of any statistical study. 

[9] They may be used to characterize key 

distributional features and forms, such as dispersion 

and spread as determined by mean and variance and 

peakness of the distribution as determined by 

kurtosis. They can also be used to look at the 

symmetry of the distribution’s shape as determine 

by skewness. The rth moment of TELTL-G 

distribution is given by: 

𝐸(𝑦𝑟) = 𝜇𝑟 ∫ 𝑦𝑟∞

−∞
 𝑓(𝑦, 𝛽, 𝜃, 𝜓)𝑑𝑦                  (29) 

𝜇𝑟 = 𝒯 ∫ 𝑦𝑟∞

0
ℎ(𝑦, 𝜓)(𝐻(𝑦, 𝜓))

𝑗+𝑝
𝑑𝑦             (30) 

 

2.6. Moment generating function of TELTL-G 

The moment generating function of the random 

variable that follows TELTL-G having pdf in 

equation (5) is given by; 

𝐸(𝑒𝑡𝑦) = 𝑀𝑦(𝑡) = ∫ 𝑒𝑡𝑦𝑓(𝑦, 𝛽, 𝜃, 𝜓)𝑑𝑦
∞

−∞
    (31) 

Using power series expansion. 

                   𝑒𝑡𝑦 = ∑
𝑡𝑞𝑦𝑞

𝑞!
                               ∞

𝑞=0    (32) 

Substitute equation (32) in to (31), we have. 

 

𝑀𝑦(𝑡) = ∑ ∫
𝒯𝑡𝑞𝑦𝑞ℎ(𝑦,𝜓)(𝐻(𝑦,𝜓))

𝑗+𝑝

𝑞!
𝑑𝑦 

∞

−∞
∞
𝑞=0   (33) 

                 𝑀𝑦(𝑡) = ∑ 𝒯𝛥                                 ∞
𝑞=0 (34) 

Where, 

    𝛥 = ∫ 𝑦𝑞ℎ(𝑦, 𝜓)(𝐻(𝑦, 𝜓))
𝑗+𝑝

𝑑𝑦                      
∞

−∞
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    𝒯 = ∑ ∑ ∑ ∑ ∑ (𝜃−1
𝑖

)(𝑘𝜃
𝑚

)∞
𝑝=0

∞
𝑚=0

∞
𝑘=0

∞
𝑗=0

∞
𝑖=0 x 

2𝑗+𝑝+1(−1)𝑖+𝑗+𝑘+𝑝(𝑖 + 1)𝑗𝛽𝑘+1𝜃𝑚𝑝𝑡𝑞

(1 − 𝑒−𝛽)𝑗! 𝑘! 𝑞!
 

2.7. Order statistics 

Let y1,y2,y3,…,yn be a random sample from the 

TELTL-G distribution and let 𝒚(𝟏), . . . , 𝒚(𝒏) be the 

corresponding order statistics. The pdf of nth order 

statistic can be written as; 

                    𝒇𝒊,𝒏(𝒚) =
𝒏!

(𝒊−𝟏)(𝒏−𝒊)!
𝒇(𝒚)[𝑭(𝒚)]𝒊−𝟏x 

                      [𝟏 − 𝑭(𝒚)]𝒏−𝒊                                    (35)     

Now, using power series expansion; 

[𝟏 − 𝑭(𝒚)]𝒏−𝒊 = ∑ (−𝟏)𝒋𝒏−𝒊
𝒋=𝟎 (𝒏−𝒊

𝒋
) [𝑭(𝒚)]𝒋     (36) 

Implies that equation (35) become; 

𝒇𝒊,𝒏(𝒚) =
(−𝟏)𝒋𝒏!𝒇(𝒚)

(𝒊−𝟏)(𝒏−𝒊)!
∑ (𝒏−𝒊

𝒋
) [𝑭(𝒚)]𝒊+𝒋−𝟏𝒏−𝒊

𝒋=𝟎     (37) 

𝒇𝒊,𝒏(𝒚) = ∑
(−𝟏)𝒋𝒏!𝒇(𝒚)

(𝒊−𝟏)(𝒏−𝒊−𝒋)!𝒋!
[𝑭(𝒚)]𝒊+𝒋−𝟏    𝒏−𝒊

𝒋=𝟎      (38) 

 

𝒇𝒊,𝒏(𝒚) = ∑
𝜷𝜽(−𝟏)𝒋𝒏!𝒆−𝟐𝑯(𝒚,𝝍)(𝟏−𝒆−𝟐𝑯(𝒚,𝝍))

𝜽−𝟏

𝟐−𝟏(𝒊−𝟏)(𝒏−𝒊−𝒋)!𝒋!(𝟏−𝒆−𝜷)𝒊+𝒋
𝒏−𝒊
𝒋=𝟎 x 

 

 𝒉(𝒚, 𝝍)𝒆−𝜷(𝟏−𝒆−𝟐𝑯(𝒚,𝝍))
𝜽

 (𝟏 −

                             𝒆−𝜷(𝟏−𝒆−𝟐𝑯(𝒚,𝝍))
𝜽

)
𝒊+𝒋−𝟏

          (39) 

 

𝒇𝒊,𝒏(𝒚) = ∑
𝟐𝜼𝜷𝜽(−𝟏)𝒋𝒏!

(𝒊−𝟏)(𝒏−𝒊−𝒋)!𝒋!(𝟏−𝒆−𝜷)𝒊+𝒋
𝒏−𝒊
𝒋=𝟎                (40) 

Where 

𝜼 =
𝒉(𝒚, 𝝍)𝒆−𝟐𝑯(𝒚,𝝍)(𝟏 − 𝒆−𝟐𝑯(𝒚,𝝍))

𝜽−𝟏

𝒆𝜷(𝟏−𝒆−𝟐𝑯(𝒚,𝝍))
𝜽

 (𝟏 − 𝒆−𝜷(𝟏−𝒆−𝟐𝑯(𝒚,𝝍))
𝜽

)
𝟏−𝒊−𝒋 

 

The minimum order statistics is; 

       𝒇𝟏,𝒏(𝒚) =
𝒏!

(𝒏 − 𝟏)!
𝒇(𝒚)[𝟏 − 𝑭(𝒚)]𝒏−𝟏 (𝟒𝟏) 

 

= 𝒏! 𝒇(𝒚)[𝟏 − 𝑭(𝒚)]𝒏−𝟏 
 

𝒇𝟏,𝒏(𝒚) = ∑ (𝒏−𝟏
𝒋

) 𝒏! (−𝟏)𝒋𝒇(𝒚)[𝑭(𝒚)]𝒋∞
𝒋=𝟎     (42) 

 

Substituting f(y) and F(y), we have; 

 

𝒇𝟏,𝒏(𝒚) = ∑
𝟐𝜷𝜽(−𝟏)𝒋𝒏!𝒆−𝟐𝑯(𝒚,𝝍)(𝟏−𝒆−𝟐𝑯(𝒚,𝝍))

𝜽−𝟏

(𝟏−𝒆−𝜷)𝒋+𝟏
∞
𝒋=𝟎 x 

 (𝒏−𝟏
𝒋

) 𝒆−𝜷(𝟏−𝒆−𝟐𝑯(𝒚,𝝍))
𝜽

 (𝟏 −

                               𝒆−𝜷(𝟏−𝒆−𝟐𝑯(𝒚,𝝍))
𝜽

)
𝒋

                 (43) 

 

 

And for the maximum order statistics, equation (35) 

reduced to; 

        𝒇𝒊,𝒏(𝒚) =
𝒏!

(𝒏−𝟏)!
𝒇(𝒚)[𝑭(𝒚)]𝒏−𝟏                  (44) 

 𝒇𝒏,𝒏(𝒚) = ∑
𝟐𝜷𝜽(−𝟏)𝒋𝒏!𝒆−𝟐𝑯(𝒚,𝝍)(𝟏−𝒆−𝟐𝑯(𝒚,𝝍))

𝜽−𝟏

(𝟏−𝒆−𝜷)𝒏
∞
𝒋=𝟎 x 

 𝒆−𝜷(𝟏−𝒆−𝟐𝑯(𝒚,𝝍))
𝜽

 (𝟏 − 𝒆−𝜷(𝟏−𝒆−𝟐𝑯(𝒚,𝝍))
𝜽

)
𝒏−𝟏

  (45) 

 

 

3. ESTIMATION 

3.1 Maximum Likelihood Estimation 

Let y1,y2,y3,…,yn be a random sample from the 

TELTL-G family of distribution with pdf in 

equation (5) with �̅� =  (𝜷, 𝜽, 𝝍), the TELTL-G’s n 

sample log-likelihood is drive as: 

𝒍 = 𝐥𝐨𝐠 (𝒚/�̅�) = 𝒍𝒐𝒈 ∏ 𝒇(𝒚/�̅�)𝒏
𝒊=𝟏                  (46) 

𝒍(�̅�) = ∏ [
𝟐𝜷𝜽(𝟏−𝒆−𝟐𝑯(𝒚,𝝍))

𝜽−𝟏
𝒉(𝒚,𝝍)𝒆−𝟐𝑯(𝒚,𝝍)

𝟏−𝒆−𝜷
]𝒏

𝒊=𝟏 x 

                           𝒆−𝜷(𝟏−𝒆−𝟐𝑯(𝒚,𝝍))
𝜽

                     (47) 

𝒍𝒐𝒈𝒍(�̅�) = 𝒏𝒍𝒐𝒈(𝟐) + 𝒏𝒍𝒐𝒈(𝜷) + 𝒏𝒍𝒐𝒈(𝜽)+ 

∑ 𝒍𝒐𝒈𝒉(𝒚, 𝝍) − 𝟐 ∑ 𝑯(𝒚, 𝝍)𝒏
𝒊=𝟏

𝒏
𝒊=𝟏 + 𝒏𝒍𝒐𝒈(𝟏)+ 

(𝒏𝜽 − 𝟏) 𝐥𝐨𝐠(𝟏 − 𝒆−𝟐𝑯(𝒚,𝝍)) − 𝜷 ∑ (𝟏 −𝒏
𝒊=𝟏

𝒆−𝟐𝑯(𝒚,𝝍))
𝜽

− 𝒏𝒍𝒐𝒈(𝟏 − 𝒆−𝜷)                        (48) 



Abubakar et al. 

Truncated Exponential Log-Topp-Leon Generalized Family of Distributions                  2024; 1(1): 147-161 
 

152 
 

By differentiating the log likelihood with respect to 

β, θ, and ψ, we have; 

𝒅𝒍

𝒅𝜷
=

𝒏

𝜷
−

𝒏𝒆−𝜷

(𝟏−𝒆−𝜷)
− ∑ (𝟏 − 𝒆−𝟐𝑯(𝒚,𝝍))

𝜽𝒏
𝒊=𝟏      (49) 

𝒅𝒍

𝒅𝜽
=

𝒏

𝜽
+ 𝒏 𝐥𝐨𝐠(𝟏 − 𝒆−𝟐𝑯(𝒚,𝝍)) − 𝜷 ∑ (𝟏 −𝒏

𝒊=𝟏

𝒆−𝟐𝑯(𝒚,𝝍))
𝜽

𝐥𝐨𝐠 (𝟏 − 𝒆−𝟐𝑯(𝒚,𝝍))                     (50) 

𝒅𝒍

𝒅𝝍
= ∑

𝒉′(𝒚,𝝍)

𝒉(𝒚,𝝍)
𝒏
𝒊=𝟏 − 𝟐 ∑ 𝒉(𝒚, 𝝍)𝒏

𝒊=𝟏 +

𝟐(𝒏𝜽−𝟏)𝒆−𝟐𝑯(𝒚,𝝍)𝒉(𝒚,𝝍)

(𝟏−𝒆−𝟐𝑯(𝒚,𝝍))
− 𝟐𝜷𝜽𝒉(𝒚, 𝝍) ∑ (𝟏 −𝒏

𝒊=𝟏

𝒆−𝟐𝑯(𝒚,𝝍))
𝜽−𝟏

𝒆−𝟐𝑯(𝒚,𝝍)                                  (51) 

Where     
𝒅𝑯(𝒚,𝝍)

𝒅𝝍
= 𝒉(𝒚, 𝝍) 

 

3.2. Least Square Estimation 

Another method used for estimating parameters of 

the probability model is least square [21]. Since it 

is not always possible to acquire the explicit forms 

of the maximum likelihood estimators, alternative 

approaches are created to address this issue. Let 

y1,y2,y3,…,yn represent the ordered samples from 

the TELTL-G distribution that were taken from a 

sample of size n. 

       𝑇(𝑘) = ∑ {𝐹(𝑦) −
𝑖

𝑛+1
}

2
𝑛
𝑖=0                    (52) 

𝑇(𝑘) = ∑ {
1−𝑒

−𝛽(1−𝑒−2𝐻(𝑦,𝜓))
𝜃

1−𝑒−𝛽 −
𝑖

𝑛+1
}

2

𝑛
𝑖=0        (53) 

The estimate of �̅�𝐿𝑆𝐸 = (�̅�, �̅�, �̅�)can be obtained 

by differentiating equation (53) 

𝑑𝑇(𝑘)

𝑑𝜃
= −2 ∑ {

1−𝑒
−𝛽(1−𝑒−2𝐻(𝑦,𝜓))

𝜃

1−𝑒−𝛽 −𝑛
𝑖=1

𝑖

𝑛+1
} {

𝛽(1−𝑒−2𝐻(𝑦,𝜓))
𝜃

log (1−𝑒−2𝐻(𝑦,𝜓))𝑒
−𝛽(1−𝑒−2𝐻(𝑦,𝜓))

𝜃

1−𝑒−𝛽 }

                                                                         (54) 

𝑑𝑇(𝑘)

𝑑𝛽
= −2 ∑ {

1−𝑒
−𝛽(1−𝑒−2𝐻(𝑦,𝜓))

𝜃

1−𝑒−𝛽 −
𝑖

𝑛+1
}𝑛

𝑖=1 x 

{
(1−𝑒−𝛽)(1−𝑒−2𝐻(𝑦,𝜓))

𝜃
𝑒

−𝛽(1−𝑒−2𝐻(𝑦,𝜓))
𝜃

(1−𝑒−𝛽)2 −

        
𝑒−𝛽(1−𝑒

−𝛽(1−𝑒−2𝐻(𝑦,𝜓))
𝜃

)

(1−𝑒−𝛽)2 }                            (55) 

𝑑𝑇(𝑘)

𝑑𝜓
= −2 ∑ {

1−𝑒
−𝛽(1−𝑒−2𝐻(𝑦,𝜓))

𝜃

1−𝑒−𝛽 −
𝑖

𝑛+1
}𝑛

𝑖=1 x 

{
2𝛽𝜃𝒉(𝒚,𝝍)𝑒−2𝐻(𝑦,𝜓)(1−𝑒−2𝐻(𝑦,𝜓))

𝜃−1
𝑒

−𝛽(1−𝑒−2𝐻(𝑦,𝜓))
𝜃

(1−𝑒−𝛽)
}  

                                                                                  (56)                                              

 

3.3 Estimation Using Goodness of Fit (Cramer-

Von-Mises) 

As demonstrated, the minimum biased when 

compared to the other Cramer-von-Mises goodness-

of-fit statistics estimators is Cramer-von-Mises 

estimates. [7] Provides the formula 𝐶(𝜅), where the 

estimators guarantee its minimum about the 

unidentified parameters. 

𝐶𝑉(𝑘) =
1

12𝑛
+ ∑ {𝐹(𝑦) −

2𝑖−1

2𝑛
}

2
𝑛
𝑖=0               (57) 

By solving the above equation, the estimate of k 

can be obtain; 

𝐶𝑉(𝑘) =
1

12𝑛
+ ∑ {

1−𝑒
−𝛽(1−𝑒−2𝐻(𝑦,𝜓))

𝜃

1−𝑒−𝛽 −𝑛
𝑖=0

                                         
2𝑖−1

2𝑛
}

2

                         (58) 

𝑑𝐶𝑉(𝑘)

𝑑𝜃
= −2 ∑ {

1−𝑒
−𝛽(1−𝑒−2𝐻(𝑦,𝜓))

𝜃

1−𝑒−𝛽 −𝑛
𝑖=1
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2𝑖−1

2𝑛
} {

𝛽(1−𝑒−2𝐻(𝑦,𝜓))
𝜃

log (1−𝑒−2𝐻(𝑦,𝜓))𝑒
−𝛽(1−𝑒−2𝐻(𝑦,𝜓))

𝜃

1−𝑒−𝛽 }

                                                                         (59) 

𝑑𝐶𝑉(𝑘)

𝑑𝛽
= −2 ∑ {

1−𝑒
−𝛽(1−𝑒−2𝐻(𝑦,𝜓))

𝜃

1−𝑒−𝛽 −
2𝑖−1

2𝑛
}𝑛

𝑖=1 x 

{
(1−𝑒−𝛽)(1−𝑒−2𝐻(𝑦,𝜓))

𝜃
𝑒

−𝛽(1−𝑒−2𝐻(𝑦,𝜓))
𝜃

(1−𝑒−𝛽)2 −

        
𝑒−𝛽(1−𝑒

−𝛽(1−𝑒−2𝐻(𝑦,𝜓))
𝜃

)

(1−𝑒−𝛽)2 }                            (60) 

𝑑𝐶𝑉(𝑘)

𝑑𝜓
= −2 ∑ {

1−𝑒
−𝛽(1−𝑒−2𝐻(𝑦,𝜓))

𝜃

1−𝑒−𝛽 −
2𝑖−1

2𝑛
}𝑛

𝑖=1 x 

{
2𝛽𝜃𝒉(𝒚,𝝍)𝑒−2𝐻(𝑦,𝜓)(1−𝑒−2𝐻(𝑦,𝜓))

𝜃−1
𝑒

−𝛽(1−𝑒−2𝐻(𝑦,𝜓))
𝜃

(1−𝑒−𝛽)
}  

                                                                                  (61)                                              

 

4. SOME FAMILY MEMBERS OF TELTL-G 

The TELTL-G family’s unique sub-models, the 

Truncated exponential log topp-leone exponential 

Distribution (TELTL-ED) and the Truncated 

exponential log topp-leone weibull Distribution 

(TELTL-WD), are addressed in this section. 

4.1. Truncated exponential log topp-leone 

exponentiated distribution. 

Let 𝐻(𝑦, 𝜓) be the cdf of the exponential random 

variable given by 𝐺(𝑦, 𝜓) = 1 − 𝑒−𝜋𝑦 , 𝑦, 𝜋 > 0 

and 𝑔(𝑦, 𝜓) = 𝑒−𝜋𝑦 . Then, the cdf of TELTL-E 

distribution has the following form;                                                                                  

  𝐹𝑇𝐸𝐿𝑇𝐿−𝐸 (𝑦, 𝛽, 𝜃, 𝜋) =
1−𝑒

−𝛽(1−𝑒−2(1−𝑒−𝜋𝑦))
𝜃

1−𝑒−𝛽    (62) 

And the corresponding probability density function 

is; 

𝑓𝑇𝐸𝐿𝑇𝐿−𝐸(𝑦, 𝛽, 𝜃, 𝜋) =
2𝛽𝜃  𝑒−𝜋𝑦(1−𝑒−2(1−𝑒−𝜋𝑦))

𝜃−1

1−𝑒−𝛽 x 

𝑒−2(1−𝑒−𝜋𝑦)𝑒
−𝛽(1−𝑒−2(1−𝑒−𝜋𝑦))

𝜃

𝑦, 𝜃, 𝛽 > 0      (63) 

While other properties of TELTL-E distribution 

including quantile, survival function, and Hazard 

rate function are; 

 

𝑦𝛼 = −
1

𝜋
𝑙𝑜𝑔 {1 +

1

2
𝑙𝑜𝑔 {1 −

                             {−
log (1−𝛼(1−𝑒−𝛽)

𝛽
}

1

𝜃
}}              (64)                                                                                 

  𝑆(𝑦) =
𝑒

−𝛽(1−𝑒−2(1−𝑒−𝜋𝑦))
𝜃

−𝑒−𝛽

1−𝑒−𝛽                           

(65) 

𝐻(𝑦) =
2𝛽𝜃  𝑒−𝜋𝑦(1−𝑒−2(1−𝑒−𝜋𝑦))

𝜃−1
𝑒−2(1−𝑒−𝜋𝑦)

𝑒
−𝛽(1−𝑒−2(1−𝑒−𝜋𝑦))

𝜃

−𝑒−𝛽

x 

                    𝑒−𝛽(1−𝑒−2(1−𝑒−𝜋𝑦))
𝜃

                          (66) 

The pdf plot of the TELTL-E distribution for 

different values of the parameters is illustrated in 

Figure (1/a), which shows that the distribution has a 

positive skewed distribution with a monotonic 

increasing cdf in Figure (2/b) for different values of 

the parameter, showing an increasing upward and 

constant at 1. While Figure (3/c) demonstrates an 

increase in the hazard function and a decrease as x 

tends to zero, and the survival function as well in 

Figure (4/d). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: pdf plot for some values of parameters of 

TELTL-E 
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Figure 2: cdf plot for some values of parameters of 

TELTL-E 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: survival plot for some values of 

parameters of TELTL-E 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Hazard rate plot for some selected values 

of parameters of TELTL-E 

 

 

4.2. Truncated exponential log topp-leone weibull 

distribution 

Let 𝐻(𝑦, 𝜓) be the cdf of the weibull random 

variable given by 𝐺(𝑦, 𝜓) = 1 − 𝑒
−(

𝑦

𝜁
)

𝜎

, 𝑦, 𝜁, 𝜎 > 0 

and 𝑔(𝑦, 𝜓) = 𝑒
−(

𝑦

𝜁
)𝜎

. Then, the cdf of TELTL-E 

distribution has the following form;                                                                                

   

𝐹𝑇𝐸𝐿𝑇𝐿−𝑊(𝑦, 𝛽, 𝜃, 𝜁, 𝜎) =
1−𝑒

−𝛽(1−𝑒
−2(1−𝑒−(𝑦/𝜁)𝜎

)
)

𝜃

1−𝑒−𝛽        

                                                 𝑦, 𝛽, 𝜃, 𝜁, 𝜎 > 0       (67) 

𝑓𝑇𝐸𝐿𝑇𝐿𝑊 (𝑦, 𝛽, 𝜃, 𝜁, 𝜎) =
  (1−𝑒

−2(1−𝑒−(𝑦/𝜁)𝜎
)

)

𝜃−1

1−𝑒−𝛽 x 

2𝛽𝜃𝑒−(𝑦/𝜁)𝜎
𝑒−2(1−𝑒−(𝑦/𝜁)𝜎

)𝑒
−𝛽(1−𝑒

−2(1−𝑒−(𝑦/𝜁)𝜎
)

)

𝜃

 

                                                   𝑦, 𝜃, 𝛽, 𝜁, 𝜎 > 0      (68) 

 

Likewise, we can obtain other properties including 

quantile function, survival function, and Hazard 

rate function as follows; 

𝑦𝑘 = 𝜁 {−𝑙𝑜𝑔 {1 +
1

2
𝑙𝑜𝑔 {1 −

                   {−
log (1−𝑘(1−𝑒−𝛽))

𝛽
}

1

𝜃
}}}

1

𝜎

                  (69) 

𝑆(𝑦) =
𝑒

−𝛽(1−𝑒
−2(1−𝑒−(𝑦/𝜁)𝜎

)
)

𝜃

−𝑒−𝛽

1−𝑒−𝛽                  (70) 

𝐻(𝑦) =
 𝑒−(𝑦/𝜁)𝜎

(1−𝑒
−2(1−𝑒−(𝑦/𝜁)𝜎

)
)

𝜃−1

𝑒
−𝛽(1−𝑒

−2(1−𝑒−(𝑦/𝜁)𝜎
)

)

𝜃

−𝑒−𝛽

x 

2𝛽𝜃𝑒−2(1−𝑒−(𝑦/𝜁)𝜎
)𝑒

−𝛽(1−𝑒
−2(1−𝑒−(𝑦/𝜁)𝜎

)
)

𝜃

    (71) 

 

For several values of the parameters, the pdf plot of 

the TELTL-W distribution is illustrated in Figure 
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(5/a), which shows that the distribution has a 

positive skewed distribution with a monotonic 

increasing cdf in Figure (6/b), showing an 

increasing upward and constant at 1. While Figure 

(7/c) demonstrates an increase in the hazard 

function and a decrease as x tends to zero, and the 

survival function as well in Figure (8/d). 

 

 

 

 

 

 

 

 

 

Figure 5: pdf plot for some values of parameters of 

TELTL-W 

 

 

 

 

 

 

 

 

 

 

Figure 6: cdf plot for some values of parameters of 

TELTL-W 

 

 

 

 

 

 

 

 

 

Figure 7: survival plot for some values of 

parameters of TELTL-W 

 

 

 

 

 

 

 

 

 

Figure 8: Hazard rate plot for some selected values 

of parameters of TELTL-W 

 

5. APPLICATION 

5.1. Competitors models 

The following standard models used in comparing 

and evaluation the performance of the proposed 

sub-models of TELTL-G family of distribution, the 

models are; 

• Zubair Weibull Distribution by [1]. The 

cumulative distribution is given by; 

𝐹(𝑥) =
𝑒𝛼(1−𝑒−𝛾𝑥𝜃

)2

𝑒𝛼     𝑥, 𝛼, 𝛾, 𝜃 > 0      (72) 

• Kumaraswamy-Pareto Distribution proposed 

by [8] is; 

𝐹(𝑥) = 1 − {1 − [1 − [
𝑥

𝑢
]

𝑟

]
𝑠

}
𝑡

𝑥, 𝑟, 𝑠, 𝑡 > 0(73) 

• Rayleigh Pareto Distribution by [3]; 

𝐹(𝑥, 𝑝, 𝑏, 𝑐 = 2𝜃) = 1 −

             (
𝑥

𝑏
)

𝑐

𝑒
−

1

2𝑏2       𝑥, 𝑝, 𝑏, 𝑐 > 0          (74) 

• The odd generalized exponential weibull 

distribution by [23]; 

𝐹(𝑥) = (1 − 𝑒−𝜆(𝑒𝜃𝑥𝛽
−1))𝛼 𝑥, 𝜆, 𝛼, 𝜃, 𝛽 > 0(75) 

• Exponentiated Weibull Distribution by [15]. 

The distribution is defined in the following 
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way. It has cumulative distribution function 

given by; 

𝑄(𝑟) = (1 − 𝑒−(𝜃𝑟)𝜀
)𝑘 𝑟, 𝜃, 𝜀 > 0        (76) 

 

5.2. Datasets for waiting time 

The waiting periods (measured in seconds) between 

the 65 consecutive eruptions of the Kiama 

Blowhole are included in this data set. Jim Irish 

recorded the information on July 12, 1998, using a 

digital watch. Several publications have cited these 

data, including [16] and [5]. The real data are: 

Table 1: Data sets for waiting time of successive 

eruptions of the Kiama Blowhole 

 

83, 51, 87, 60, 28, 95, 8, 27, 15, 10, 18, 16, 29, 54, 

91, 8, 17, 55, 10, 35, 47, 77, 36, 17, 21, 36, 18, 40, 

10, 7, 34, 27, 28, 56, 8, 25, 68, 146, 89, 18, 73, 69, 

9, 37, 10, 82, 29, 8, 60, 61, 61, 18, 169, 25, 8, 26, 

11, 83, 11, 42, 17, 14, 9, 12. 
 

 

Table 2: Summary of the waiting time datasets 

 

Min Q1 Median Mean  Q3 Max 

7.0 14.6 28 39.83 60 169 

Figure 9: Histogram showing the skewness of 

waiting time data sets. 

 

 

 

 

Figure 10: Histogram showing the TTT plots for 

model adequacy for waiting time data sets. 

Calculations are made to compare the fitted models 

using the goodness-of-fit metrics, which include the 

log-likelihood function evaluated at the MLEs, the 

Akaike information criterion (AIC), the Bayesian 

information criterion (BIC), the Akaike information 

corrected criterion (AICc), Anderson Darling (A*), 

Cramer-von Mises (W*), and Kolmogorov-

Smirnov (K-S*). The better the fit to the data, 

generally speaking, the smaller the values of these 

statistics [5]. 

Table 3: MLE’s of the parameter(s) 

 

 

 

 

 

 

 

Distribution  αˆ �̂� �̂� �̂� 

TELTL-W 2.225 0.3829 0.00000021 0.1150 

TELTL-E 1.88118 0.00628 0.36431  

OGEW 2.22827 0.43048 0.36757 0.1995 

ExW 0.98523 0.3819 23.4871  

ZW 2.2263 0.7087 0.1708  

KwP 10.9202 2.6152 4.6173 0.3303 

RP 0.00247 0.39282 0.05613  
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Table 4: Goodness of fit measure for the fitted Models 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: Normality test for the fitted models 

Distribution KS* A* W* 

TELTL-WD 1 8.4728 1.4627 

TELTL-ED 0.75866 12.095 2.4103 

OGEWD 0.99126 1.4572 0.22517 

EWD 0.094259 0.81842 0.11201 

ZWD 0.20814 1.5251 0.23675 

KwPD 0.10326 0.86123 0.11965 

RPD 0.96038 0.79 0.10793 

 

5.3. Data sets for Wheaton River flood 

The information relates to the Wheaton River’s 

flood peaks (measured in m3/s) in Yukon Territory, 

Canada, near Carcross. The data, which is rounded 

to one decimal place, includes 72 exceedances for 

the years 1958–1984. The data were used by [8]. 

Table 6: Data sets of Wheaton River flood 

 

1.7, 2.2, 14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 1.9, 13.0, 12.0, 

9.3, 1.4, 18.7, 8.5, 25.5, 11.6, 14.1, 22.1, 1.1, 2.5, 

14.4, 1.7, 37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0, 7.3, 

22.9, 1.7, 0.1, 1.1, 0.6, 9.0, 1.7, 7.0, 20.1, 0.4, 2.8, 

14.1, 9.9, 10.4, 10.7, 30.0, 3.6,5.6, 30.8, 13.3, 4.2, 

25.5, 3.4, 11.9, 21.5, 27.6, 36.4, 2.7, 64.0,1.5, 2.5, 

27.4, 1.0, 27.1, 20.2, 16.8, 5.3, 9.7, 27.5, 2.5, 27.0
 

Table 7: Summary of the Wheaton River flood data 

sets 

Min. Q1 Median Mean Q3 Max 

0.10 2.13 9.50 12.204 20.3 64.0 

 

Figure 11: Histogram showing the skewness of 

Distribution LL AIC AICc BIC 

TELTL-WEIB. 533.11 -1057.5 -1053.2 -1049.6 

TELTL-EXP. -25.48 56.955 57.36 63.43 

OGEW -103.78 215.55 216.23 224.19 

EWD -293.96 593.92 594.32 600.40 

ZWD -296.75 599.89 599.49 605.97 

KwPD -298.93 606.53 605.86 614.49 

RPD -379.80 765.59 765.99 772.07 
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Wheaton River flood data sets. 

 

 

 

 

 

 

Figure 12: Histogram showing the TTT plots for 

model adequacy for Wheaton River flood data sets. 

Like the previous data, Calculations are also made 

to compare the fitted models using the goodness of-

fit metrics, which include the log-likelihood 

function evaluated at the MLEs, the AIC, BIC, 

AICc, A*, W*, and K-S*. 

 

Table 8: MLE’s of the parameter(s) 

 

 

 

 

 

 

Table 9: Goodness of fit measure for the fitted models 

 

 

 

 

Table 10: Normality test for the fitted models 

Distribution KS* A* W* 

TELTL-ED 0.57519 9.1135 1.7285 

TELTL-WD 1 2.968 0.51964 

EWD 0.10742 0.6358 0.10444 

ZWD 0.28944 1.5209 0.26993 

RPD 0.88035 1.4535 0.26069 

5.4. Discussion 

The analysis conducted demonstrate the comparison 

of the proposed models and other base line 

distribution using the skewed waiting time datasets 

and Wheaton River flood data sets as shown in 

Figure 1& 2 and the data summary in Table 2 & 

7.Table 3 & 8 provides the parameter estimates for 

each of the data set’s fitted distributions. 

Conversely, Table 4 & 9 listed each model’s 

matching AIC, AICc, and BIC values. The table 

Distribution  αˆ �̂� �̂� �̂� 

TELTL-WEIB 2.225 0.3794 0.000004046 0.2212 

TELTL-EXP 0.99995 0.0000003 0.54444807  

EWD 0.05038 1.3832 0.5207  

ZWD 1.7716 0.5148 0.6364  

RPD 0.00247 0.4853 0.1236  

Distribution  LL AIC AICc BIC 

TELTL-WEIB. 695.646 -1382.69 -1383.3 -1374.2 

TELTL-EXP. 63.665 -130.977 -131,33 -124.50 

EWD -251.03 508.050 508.403 514.88 

ZWD -252.88 512.109 511.756 518.59 

RPD -284.73 575.468 575.82 582.30 
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provides sufficient evidence to demonstrate that the 

sub-models of truncated Exponential log topp leone 

family of distribution (TELTL-G) outperforms the 

baseline distribution and certain of its extensions. 

Nonetheless, the fact that relatively little 

information was lost is explained by the negative 

values of the AIC, AICc, and BIC, as in TELTL-

WD. As a result, when compared to the other five 

distributions used in the performance comparisons 

for fitting the same data set, it might be chosen as 

the best model as well as the TELTL-ED. 

In order to determine the values of the Akaike 

Information Criterion (AIC), Bayesian Information 

Criterion (BIC), and Consistent Akaike Information 

Criterion (AICc), log-likelihood was utilized to 

estimate the parameters of each distribution for the 

dataset. Tables 4 & 6 display the collected results. 

The sub-models of TELTL-GD yields the lowest 

values for the AIC, BIC, and AICc, as can be seen. 

Lastly, Table 5 & 10 display the values of Anderson-

Darling (A*), Cramer-von Mises (W*), and 

Kolmogorov-Smirnov (K-S*). Thus, among the 

studied distributions, we conclude that the the sub-

models of TELTL-GD offers the best fit compare to 

other models. 

 

6. CONCLUSION 

A probability model known as the Truncated 

Exponential Generalized Family of Distribution 

(TELTL-G) was created with two parameters and a 

parameter vector. The specific expressions for the 

suggested distribution’s moments, moment-

generating function, quantile function, median, 

survival function, hazard function, and ordered 

statistics have all been carefully examined. 

Additionally, the distribution is favorably skewed, 

according to several graphs of the distributions. The 

estimation using maximum likelihood, goodness of 

fit (Cramer-Von-Mises), and least square method 

was used to estimate the parameters and parameter 

vector. 
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